Skip to Content
Merck

Aminopeptidases: structure and function.

FASEB journal : official publication of the Federation of American Societies for Experimental Biology (1993-02-01)
A Taylor
ABSTRACT

Aminopeptidases catalyze the cleavage of amino acids from the amino terminus of protein or peptide substrates. They are widely distributed throughout the animal and plant kingdoms and are found in many subcellular organelles, in cytoplasm, and as membrane components. Several aminopeptidases perform essential cellular functions. Many, but not all, of these peptidases are zinc metalloenzymes and are inhibited by the transition-state analog bestatin. Some are monomeric, and others are assemblies of relatively high mass (50 kDa) subunits. cDNA sequences are available for several aminopeptidases, and a 3-dimensional structure is available for the bovine lens enzyme. Crystallographic, electron micrographic, NMR, and photoaffinity labeling studies indicate that lens leucine aminopeptidase protomers are bilobal and that bestatin and substrates are bound in an active site, which is found in the larger lobe on each protomer. Zn2+ is involved in substrate liganding in most aminopeptidases. There is no evidence of an acyl-enzyme intermediate in hydrolysis. Amino acid sequences determined directly or deduced from cDNAs indicate some amino acid sequence homologies in organisms as diverse as Escherichia coli and mammals, particularly in catalytically important residues or in residues involved in metal ion binding.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Bestatin hydrochloride, ≥98% (HPLC)