Skip to Content
Merck
  • Single-cell chromatin accessibility profiling reveals a self-renewing muscle satellite cell state.

Single-cell chromatin accessibility profiling reveals a self-renewing muscle satellite cell state.

The Journal of cell biology (2023-06-29)
Arinze E Okafor, Xin Lin, Chenghao Situ, Xiaolin Wei, Yu Xiang, Xiuqing Wei, Zhenguo Wu, Yarui Diao
ABSTRACT

A balance between self-renewal and differentiation is critical for the regenerative capacity of tissue-resident stem cells. In skeletal muscle, successful regeneration requires the orchestrated activation, proliferation, and differentiation of muscle satellite cells (MuSCs) that are normally quiescent. A subset of MuSCs undergoes self-renewal to replenish the stem cell pool, but the features that identify and define self-renewing MuSCs remain to be elucidated. Here, through single-cell chromatin accessibility analysis, we reveal the self-renewal versus differentiation trajectories of MuSCs over the course of regeneration in vivo. We identify Betaglycan as a unique marker of self-renewing MuSCs that can be purified and efficiently contributes to regeneration after transplantation. We also show that SMAD4 and downstream genes are genetically required for self-renewal in vivo by restricting differentiation. Our study unveils the identity and mechanisms of self-renewing MuSCs, while providing a key resource for comprehensive analysis of muscle regeneration.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-Laminin antibody produced in rabbit, 0.5 mg/mL, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
Tamoxifen, ≥99%
Sigma-Aldrich
Anti-TGF β Receptor III antibody produced in rabbit, affinity isolated antibody