Skip to Content
Merck
  • Cholesterol biosynthesis defines oligodendrocyte precursor heterogeneity between brain and spinal cord.

Cholesterol biosynthesis defines oligodendrocyte precursor heterogeneity between brain and spinal cord.

Cell reports (2022-03-03)
Luipa Khandker, Marisa A Jeffries, Yun-Juan Chang, Marie L Mather, Angelina V Evangelou, Jennifer N Bourne, Azadeh K Tafreshi, Isis M Ornelas, Ozlem Bozdagi-Gunal, Wendy B Macklin, Teresa L Wood
ABSTRACT

Brain and spinal cord oligodendroglia have distinct functional characteristics, and cell-autonomous loss of individual genes can result in different regional phenotypes. However, a molecular basis for these distinctions is unknown. Using single-cell analysis of oligodendroglia during developmental myelination, we demonstrate that brain and spinal cord precursors are transcriptionally distinct, defined predominantly by cholesterol biosynthesis. We further identify the mechanistic target of rapamycin (mTOR) as a major regulator promoting cholesterol biosynthesis in oligodendroglia. Oligodendroglia-specific loss of mTOR decreases cholesterol biosynthesis in both the brain and the spinal cord, but mTOR loss in spinal cord oligodendroglia has a greater impact on cholesterol biosynthesis, consistent with more pronounced deficits in developmental myelination. In the brain, mTOR loss results in a later adult myelin deficit, including oligodendrocyte death, spontaneous demyelination, and impaired axonal function, demonstrating that mTOR is required for myelin maintenance in the adult brain.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Monoclonal Anti-β-Actin antibody produced in mouse, clone AC-15, ascites fluid
Sigma-Aldrich
Bovine Serum Albumin, lyophilized powder, essentially fatty acid free, ≥96% (agarose gel electrophoresis)
Sigma-Aldrich
Simvastatin, Sodium Salt, InSolution, ≥95%
Sigma-Aldrich
Anti-Caspr Antibody, clone K65/35, clone K65/35, from mouse
Sigma-Aldrich
Rapamycin, ≥95% (HPLC), powder