Skip to Content
Merck
  • Solvation and crystal effects in bilirubin studied by NMR spectroscopy and density functional theory.

Solvation and crystal effects in bilirubin studied by NMR spectroscopy and density functional theory.

The journal of physical chemistry. A (2011-08-19)
Thierry Rohmer, Jörg Matysik, Franz Mark
ABSTRACT

The open-chain tetrapyrrole compound bilirubin was investigated in chloroform and dimethyl sulfoxide solutions by liquid-state NMR and as solid by (1)H, (13)C, and (15)N magic-angle spinning (MAS) solid-state NMR spectroscopy. Density functional theory (DFT) calculations were performed to interpret the data, using the B3LYP exchange-correlation functional to optimize geometries and to compute NMR chemical shieldings by the gauge-including atomic orbital method. The dependence of geometries and chemical shieldings on the size of the basis sets was investigated for the reference molecules tetramethylsilane, NH(3), and H(2)O, and for bilirubin as a monomer and in clusters consisting of up to six molecules. In order to assess the intrinsic errors of the B3LYP approximation in calculating NMR shieldings, complete basis set estimates were obtained for the nuclear shielding values of the reference molecules. The experimental liquid-state NMR data of bilirubin are well reproduced by a monomeric bilirubin molecule using the 6-311+G(2d,p) basis set for geometry optimization and for calculating chemical shieldings. To simulate the bilirubin crystal, a hexameric model was required. It was constructed from geometry-optimized monomers using information from the X-ray structure of bilirubin to fix the monomeric entities in space and refined by partial optimization. Combining experimental (1)H-(13)C and (1)H-(15)N NMR correlation spectroscopy and density functional theory, almost complete sets of (1)H, (13)C, and (15)N chemical shift assignments were obtained for both liquid and solid states. It is shown that monomeric bilirubin in chloroform solution is formed by 3-vinyl anti conformers, while bilirubin crystals are formed by 3-vinyl syn conformers. This conformational change leads to characteristic differences between the liquid- and solid-state NMR resonances.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Tetramethylsilane, ACS reagent, NMR grade, ≥99.9%
Sigma-Aldrich
Tetramethylsilane, electronic grade, ≥99.99% trace metals basis
Supelco
Tetramethylsilane, analytical standard, for NMR spectroscopy, ACS reagent
Sigma-Aldrich
Tetramethylsilane, ≥99.0% (GC)