Skip to Content
Merck
  • Type I Interferon Response Dysregulates Host Iron Homeostasis and Enhances Candida glabrata Infection.

Type I Interferon Response Dysregulates Host Iron Homeostasis and Enhances Candida glabrata Infection.

Cell host & microbe (2020-02-23)
Michael Riedelberger, Philipp Penninger, Michael Tscherner, Markus Seifert, Sabrina Jenull, Carina Brunnhofer, Bernhard Scheidl, Irina Tsymala, Christelle Bourgeois, Andriy Petryshyn, Walter Glaser, Andreas Limbeck, Birgit Strobl, Guenter Weiss, Karl Kuchler
ABSTRACT

Type I interferons (IFNs-I) fulfil multiple protective functions during pathogenic infections, but they can also cause detrimental effects and enhance immunopathology. Here, we report that IFNs-I promote the dysregulation of iron homeostasis in macrophages during systemic infections with the intracellular pathogen Candida glabrata, leading to fungal survival and persistence. By engaging JAK1, IFNs-I disturb the balance of the transcriptional activator NRF2 and repressor BACH1 to induce downregulation of the key iron exporter Fpn1 in macrophages. This leads to enhanced iron accumulation in the phagolysosome and failure to restrict fungal access to iron pools. As a result, C. glabrata acquires iron via the Sit1/Ftr1 iron transporter system, facilitating fungal intracellular replication and immune evasion. Thus, IFNs-I are central regulators of iron homeostasis, which can impact infection, and restricting iron bioavailability may offer therapeutic strategies to combat invasive fungal infections.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Zymosan A from Saccharomyces cerevisiae, for inducing inflamatory response
Sigma-Aldrich
Mannan from Saccharomyces cerevisiae, prepared by alkaline extraction
Sigma-Aldrich
Diethyl maleate, 97%
Sigma-Aldrich
Dimethyl maleate, 96%
Sigma-Aldrich
4-Octyl itaconate, ≥98% (HPLC)
Sigma-Aldrich
8-Hydroxyquinoline
Sigma-Aldrich
Dimethyl itaconate, 99%
Sigma-Aldrich
Dimethyl itaconate, 97%
Sigma-Aldrich
Iron(II) chloride tetrahydrate, ReagentPlus®, 98%