Skip to Content
Merck
  • Associations between personal exposure to air pollutants and lung function tests and cardiovascular indices among children with asthma living near an industrial complex and petroleum refineries.

Associations between personal exposure to air pollutants and lung function tests and cardiovascular indices among children with asthma living near an industrial complex and petroleum refineries.

Environmental research (2014-04-20)
Audrey Smargiassi, Mark S Goldberg, Amanda J Wheeler, Céline Plante, Marie-France Valois, Gary Mallach, Lisa Marie Kauri, Robin Shutt, Susan Bartlett, Marie Raphoz, Ling Liu
ABSTRACT

The acute cardiorespiratory effects of air quality among children living in areas with considerable heavy industry have not been well investigated. We conducted a panel study of children with asthma living in proximity to an industrial complex housing two refineries in Montreal, Quebec, in order to assess associations between their personal daily exposure to air pollutants and changes in pulmonary function and selected indicators of cardiovascular health. Seventy-two children with asthma age 7-12 years in 2009-2010 participated in this panel study for a period of 10 consecutive days. They carried a small backpack for personal monitoring of sulphur dioxide (SO2), benzene, fine particles (PM2.5), nitrogen dioxide (NO2) and polycyclic aromatic hydrocarbons (PAHs) and underwent daily spirometry and cardiovascular testing (blood pressure, pulse rate and oxygen saturation). To estimate these associations, we used mixed regression models, adjusting for within-subject serial correlation, and for the effects of a number of personal and environmental variables (e.g., medication use, ethnicity, temperature). Children with asthma involved in the study had relatively good pulmonary function test results (mean FEV1 compared to standard values: 89.8%, mean FVC: 97.6%, mean FEF25-75: 76.3%). Median diastolic, systolic blood pressures and oxygen saturation were 60/94 mmHg and 99%, respectively. Median personal concentrations of pollutants were NO2, 5.5 ppb; benzene, 2.1 µg/m(3); PM2.5, 5.7 µg/m(3); and total PAH, 130 µg/m(3). Most personal concentrations of SO2 were below the level of detection. No consistent associations were observed between cardio-pulmonary indices and personal exposure to PM2.5, NO2 and benzene, although there was a suggestion for a small decrease in respiratory function with total concentrations of PAHs (e.g., adjusted association with FVC: -9.9 ml per interquartile range 95%CI: -23.4, 3.7). This study suggests that at low daily average levels of exposure to industrial emissions, effects on pulmonary and cardiovascular functions in children with asthma may be difficult to detect over 10 consecutive days.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Benzene, anhydrous, 99.8%
Supelco
Benzene, analytical standard
Sigma-Aldrich
Benzene, ACS reagent, ≥99.0%
Supelco
Benzene solution, certified reference material, TraceCERT®, 200 μg/mL in methanol
Sigma-Aldrich
Benzene, suitable for HPLC, ≥99.9%
Supelco
Benzene, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Benzene, puriss. p.a., reag. Ph. Eur., ≥99.7%