Skip to Content
Merck
  • AlkB homologue 2-mediated repair of ethenoadenine lesions in mammalian DNA.

AlkB homologue 2-mediated repair of ethenoadenine lesions in mammalian DNA.

Cancer research (2008-06-04)
Jeanette Ringvoll, Marivi N Moen, Line M Nordstrand, Lisiane B Meira, Bo Pang, Anders Bekkelund, Peter C Dedon, Svein Bjelland, Leona D Samson, Pål Ø Falnes, Arne Klungland
ABSTRACT

Endogenous formation of the mutagenic DNA adduct 1,N(6)-ethenoadenine (epsilon A) originates from lipid peroxidation. Elevated levels of epsilon A in cancer-prone tissues suggest a role for this adduct in the development of some cancers. The base excision repair pathway has been considered the principal repair system for epsilon A lesions until recently, when it was shown that the Escherichia coli AlkB dioxygenase could directly reverse the damage. We report here kinetic analysis of the recombinant human AlkB homologue 2 (hABH2), which is able to repair epsilon A lesions in DNA. Furthermore, cation exchange chromatography of nuclear extracts from wild-type and mABH2(-/-) mice indicates that mABH2 is the principal dioxygenase for epsilon A repair in vivo. This is further substantiated by experiments showing that hABH2, but not hABH3, is able to complement the E. coli alkB mutant with respect to its defective repair of etheno adducts. We conclude that ABH2 is active in the direct reversal of epsilon A lesions, and that ABH2, together with the alkyl-N-adenine-DNA glycosylase, which is the most effective enzyme for the repair of epsilon A, comprise the cellular defense against epsilon A lesions.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Chloroacetaldehyde solution, ~55 wt. % in H2O
Sigma-Aldrich
Chloroacetaldehyde solution, produced by Wacker Chemie AG, Burghausen, Germany, ≥45.0% in H2O (density determination)