Proliferating germ cells in Caenorhabditiselegans provide a useful model system for deciphering fundamental mechanisms underlying the balance between proliferation and differentiation. Using gene expression profiling, we identified approximately 200 genes upregulated in the proliferating germ cells of C. elegans. Functional
Journal of cell science, 124(Pt 9), 1510-1518 (2011-04-20)
Autophagy is a lysosome-mediated self-degradation process of eukaryotic cells that, depending on the cellular milieu, can either promote survival or act as an alternative mechanism of programmed cell death (PCD) in terminally differentiated cells. Despite the important developmental and medical
Development (Cambridge, England), 136(13), 2223-2234 (2009-06-09)
Fertility depends on germline stem cell proliferation, meiosis and gametogenesis, yet how these key transitions are coordinated is unclear. In C. elegans, we show that GLP-1/Notch signaling functions in the germline to modulate oocyte growth when sperm are available for
The germinal center kinases (GCK) constitute a large, highly conserved family of proteins that has been implicated in a wide variety of cellular processes including cell growth and proliferation, polarity, migration, and stress responses. Although diverse, these functions have been
Human molecular genetics, 19(16), 3206-3218 (2010-06-10)
RNA-binding protein TDP-43 has been associated with multiple neurodegenerative diseases, including amyotrophic lateral sclerosis and frontotemporal lobar dementia. We have engineered pan-neuronal expression of human TDP-43 protein in Caenorhabditis elegans, with the goal of generating a convenient in vivo model
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.