Nitroxide radicals are paramagnetic contrast agents, used in magnetic resonance imaging (MRI), that also exert antioxidant effects. Participating in cellular redox reactions, they lose their ability to provide contrast as a function of time after administration. In this study, the
Acute extremity arterial occlusion requires prompt revascularization. Delayed revascularization induces ischemia-reperfusion injury in the skeletal muscle. Organ injury-induced oxidative stress is widely reported, and oxidative stress is heavily involved in ischemia-reperfusion injury. This study aimed to evaluate oxidative stress in
American journal of physiology. Renal physiology, 288(3), F597-F603 (2004-11-13)
Oxidative stress during ischemia-reperfusion acute renal failure (IR-ARF) was noninvasively evaluated with in vivo electron paramagnetic resonance (EPR) imaging. Female ICR mice underwent left nephrectomy and 30-min ischemia-reperfusion of the right kidney. Oxidative stress was evaluated as organ reducing activity
Magnetic resonance in medicine, 57(4), 806-811 (2007-03-29)
The present study describes the advantageous application of a surface coil to electron paramagnetic resonance (EPR) irradiation in Overhauser-enhanced MRI (OMRI). OMRI is a double-resonance method for imaging free radicals based on the Overhauser effect. Proton NMR images are recorded
Clinical cancer research : an official journal of the American Association for Cancer Research, 12(8), 2455-2462 (2006-04-28)
There is considerable research directed toward the identification and development of functional contrast agents for medical imaging that superimpose tissue biochemical/molecular information with anatomical structures. Nitroxide radicals were identified as in vivo radioprotectors. Being paramagnetic, they can provide image contrast
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.