Bis salicylaldehyde-4(N)-ethylthiosemicarbazone ruthenium(iii) triphenylphosphine [Ru(Sal-etsc)(H-Sal-etsc)(PPh(3))] was synthesized and structurally characterized by spectral and X-ray crystallographic studies and it showed 100% inhibition on the DPPH radical. It also exhibited a significant lymphocyte activity and inhibitory effect on the lung carcinoma A549
C8H9N3OS, monoclinic, C2/c, a = 14.206 (3), b = 14.244 (4), c = 10.457 (4) A, beta = 116.18(2) degrees, V = 1898.9 (8) A3, Z = 8, Dm = 1.387, D chi = 1.366 g cm-3, lambda(Mo K alpha)
The molecular structures of two salicylaldehyde thiosemicarbazone derivatives, namely salicylaldehyde 4-phenylthiosemicarbazone, C(14)H(13)N(3)OS, (I), and 4-methoxysalicylaldehyde 4-phenylthiosemicarbazone, C(15)H(15)N(3)O(2)S, (II), both of potential pharmacological interest, are found in the keto (thione) tautomeric form. The first compound represents a second triclinic polymorph of
New complexes, [Ni(HL)(PPh(3))]Cl (1), [Pd(L)(PPh(3))](2), and [Pd(L)(AsPh(3))](3), were synthesized from the reactions of 4-chloro-5-methyl-salicylaldehyde thiosemicarbazone [H(2)L] with [NiCl(2)(PPh(3))(2)], [PdCl(2)(PPh(3))(2)] and [PdCl(2)(AsPh(3))(2)]. They were characterized by IR, electronic, (1)H-NMR spectral data. Further, the structures of the complexes have been determined by
Journal of medicinal chemistry, 45(17), 3573-3575 (2002-08-09)
High-throughput screening has resulted in the discovery of thiosemicarbazone thrombopoietin mimics. A shared pharmacophore hypothesis between this series and a previously identified class, the pyrazol-4-ylidenehydrazines, led to the rapid optimization of both potency and efficacy of the thiosemicarbazones. The application
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.