632317
Indium(III) oxide
nanopowder, <100 nm particle size (TEM), 99.9% trace metals basis
Synonym(s):
Diindium trioxide, Indium sesquioxide
Sign Into View Organizational & Contract Pricing
All Photos(1)
About This Item
Recommended Products
vapor pressure
<0.01 mmHg ( 25 °C)
Quality Level
assay
99.9% trace metals basis
form
nanopowder
reaction suitability
reagent type: catalyst
core: indium
particle size
<100 nm (TEM)
density
7.18 g/mL at 25 °C (lit.)
SMILES string
O=[In]O[In]=O
InChI
1S/2In.3O
InChI key
SHTGRZNPWBITMM-UHFFFAOYSA-N
Looking for similar products? Visit Product Comparison Guide
General description
Indium(III)oxide is a versatile compound with significant applications in electronics,optics, and materials science. It is widely employed in the synthesis of transparentconducting oxides (TCOs), particularly for flat-panel displays, and solarcells, due to its electrical conductivity and optical transparency. Insemiconductor technology, it is used for making indium tin oxide (ITO),enhancing the performance of electronic devices, and is sensitive to variousgases, making it suitable for gas sensing applications, particularly indetecting hazardous gases.
Application
- Amine Functionalized Surface Frustrated Lewis Pairs for CO2 Photocatalysis: Discusses the enhancement of photocatalytic performance for CO2 reduction using indium oxide hydroxide with amine-functionalized surface frustrated Lewis pairs (Q Guan et al., 2024).
- Enhancing Gas Sensing Performance through UV Photoexcitation: Explores the improvement of room-temperature gas sensing capabilities of metal oxide semiconductor chemiresistors, including indium(III) oxide, by 400 nm UV photoexcitation (S Paul et al., 2024).
- Indium(III) Complexes in Industry and Nanoparticle Synthesis: Reviews the use of trivalent indium complexes as catalysts and precursors for various industrial applications and the synthesis of nanoparticles like indium oxide (TO Ajiboye et al., 2024).
- Ag/In2O3 Inverse Opal Synthesis: Details the synthesis and perspectives of silver/indium oxide inverse opal structures, highlighting their potential in semiconductor applications due to their optical properties (AV Lyutova et al., 2024).
- Photocatalytic Generation of Hydroxyl Radicals and Manganese Species: Investigates the use of indium oxide in enhancing the photocatalytic performance of permanganate for efficient micropollutant removal under visible light (J Li et al., 2024).
Storage Class
11 - Combustible Solids
wgk_germany
WGK 3
flash_point_f
Not applicable
flash_point_c
Not applicable
ppe
dust mask type N95 (US), Eyeshields, Gloves
Choose from one of the most recent versions:
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Customers Also Viewed
Inorganic chemistry, 51(12), 6529-6536 (2012-06-06)
We report here for the first time the hollow, metastable, single-crystal, rhombohedral In(2)O(3) (rh-In(2)O(3)) nanocrystals synthesized by annealing solvothermally prepared InOOH solid nanocrystals under ambient pressure at 400 °C, through a mechanism of the Kirkendall effect, in which pore formation
Journal of physics. Condensed matter : an Institute of Physics journal, 23(33), 334203-334203 (2011-08-05)
The ionization potentials of In(2)O(3) films grown epitaxially by magnetron sputtering on Y-stabilized ZrO(2) substrates with (100) and (111) surface orientation are determined using photoelectron spectroscopy. Epitaxial growth is verified using x-ray diffraction. The observed ionization potentials, which directly affect
Nanoscale, 4(10), 3001-3012 (2012-04-13)
With the features of high mobility, a high electric on/off ratio and excellent transparency, metal oxide nanowires are excellent candidates for transparent thin-film transistors, which is one of the key technologies to realize transparent electronics. This article provides a comprehensive
Environmental science & technology, 46(10), 5528-5534 (2012-04-12)
Perfluorooctanoic acid (C(7)F(15)COOH, PFOA) has increasingly attracted worldwide concerns due to its global occurrence and resistance to most conventional treatment processes. Though TiO(2)-based photocatalysis is strong enough to decompose most organics, it is not effective for PFOA decomposition. We first
Langmuir : the ACS journal of surfaces and colloids, 27(23), 14091-14095 (2011-10-21)
In(2)O(3)@SiO(2) core-shell nanoparticles were prepared using an organic solution synthesis approach and reverse-microemulsion technique. In order to explore the availability of various silica encapsulations, a partial phase diagram for this ternary system consisting of hexane/cyclohexane (1:29 wt), surfactant (polyoxyethylene(5)nonylphenyl ether
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service