Skip to Content
MilliporeSigma
All Photos(1)

Documents

261173

Sigma-Aldrich

Praseodymium

ingot, under oil, 99.9% trace rare earth metals basis

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
Pr
CAS Number:
Molecular Weight:
140.91
EC Number:
MDL number:
UNSPSC Code:
12352300
PubChem Substance ID:

assay

99.9% trace rare earth metals basis

form

ingot

reaction suitability

reagent type: catalyst
core: praseodymium

resistivity

68 μΩ-cm, 20°C

bp

3520 °C (lit.)

mp

931 °C (lit.)

density

6.71 g/mL at 25 °C (lit.)

SMILES string

[Pr]

InChI

1S/Pr

InChI key

PUDIUYLPXJFUGB-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

pictograms

FlameExclamation mark

signalword

Danger

Hazard Classifications

Aquatic Chronic 4 - Eye Irrit. 2 - Pyr. Sol. 1 - Skin Irrit. 2

Storage Class

4.2 - Pyrophoric and self-heating hazardous materials

wgk_germany

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

Eyeshields, Faceshields, Gloves, type P3 (EN 143) respirator cartridges


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Junichiro Kojou et al.
Applied optics, 51(9), 1382-1386 (2012-03-24)
We demonstrate pulse laser operation of a Pr:LiYF(4) laser pumped by InGaN laser diodes (444 nm) using an acousto-optic modulator. We obtained a maximum laser peak power of 167 W (4 μJ/pulse) with a pulse width of 24 ns at
N Bendangsenla et al.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 103, 160-166 (2012-12-22)
The interactions of Pr(III) with nucleosides and nucleotides have been studied in different organic solvents employing absorption difference and comparative absorption spectrophotometry. The magnitudes of the variations in both energy and intensity interaction parameters were used to explore the degree
Liaolin Zhang et al.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 93, 223-227 (2012-04-10)
We report on the spectroscopic properties of Pr(3+)-doped boro-phosphate, boro-germo-silicate and tellurite glasses. The stimulated absorption and emission cross sections were estimated. Only one emission at 596 nm and 605 nm is observed in Pr(3+)-doped boro-phosphate and boro-germo-silicate glasses, respectively
Hai-Lin Cui et al.
Dalton transactions (Cambridge, England : 2003), 40(24), 6490-6493 (2011-05-20)
A pair of luminescent heterometallic lanthanide-transition-metal coordination polymers, namely, [PrLAg(3)(SCN)(6)·H(2)O](n) (1) and [PrLAg(3)(SCN)(6)](n) (2) [L = 2,6-di(pyrazol-1-yl)pyridine], have been obtained with different cooling rates under solvothermal conditions. The two structures are pseudo- supramolecular isomers constructed via the same [PrL(NCS)(6)](3-) subunit
D V Sunitha et al.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 99, 279-287 (2012-10-23)
A series of Pr(3+) (1-9 mol%) doped CdSiO(3) nanophosphors have been prepared for the first time by a low temperature solution combustion method using oxalyldihydrizide (ODH) as a fuel. The final product was characterized by Powder X-ray diffraction (PXRD), Fourier

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service